1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
| #include <iostream> #include <vector> #include <queue> #include <thread> #include <mutex> #include <condition_variable> #include <functional> #include <string> #include <unordered_map>
struct TaskInfo { std::string threadName; int priority; std::string taskType;
TaskInfo(std::string threadName, int priority, std::string taskType) : threadName(std::move(threadName)), priority(priority), taskType(std::move(taskType)) {} };
class Task { public: Task(TaskInfo metadata, std::function<void()> func) : metadata(std::move(metadata)), func(std::move(func)) {}
void execute() { func(); }
const TaskInfo& getMetadata() const { return metadata; }
private: TaskInfo metadata; std::function<void()> func; };
struct CompareTask { bool operator()(const Task& t1, const Task& t2) { return t1.getMetadata().priority < t2.getMetadata().priority; } };
class Worker { public: Worker(std::string name, size_t maxTasks) : name(std::move(name)), maxTasks(maxTasks), shouldStop(false) {}
void start() { thread = std::thread(&Worker::run, this); }
void stop() { { std::unique_lock<std::mutex> lock(mutex); shouldStop = true; } condition.notify_one(); if (thread.joinable()) { thread.join(); } }
bool runTask(const Task& task) { std::unique_lock<std::mutex> lock(mutex); if (tasks.size() >= maxTasks) { std::cout << "Queue is full on thread: " << getName() << '\n'; return false; } tasks.push(task); condition.notify_one(); return true; }
const std::string& getName() const { return name; }
private: void run() { while (true) { std::unique_lock<std::mutex> lock(mutex); condition.wait(lock, [this]() { return shouldStop || !tasks.empty(); }); if (shouldStop && tasks.empty()) { return; } auto task = tasks.top(); tasks.pop(); lock.unlock(); task.execute(); } }
std::string name; size_t maxTasks; std::thread thread; std::priority_queue<Task, std::vector<Task>, CompareTask> tasks; std::mutex mutex; std::condition_variable condition; bool shouldStop; };
class ThreadPool { public: ThreadPool() {}
~ThreadPool() { for (auto& [_, worker] : workers) { worker->stop(); } }
void allocateThread(const std::string& name, size_t maxTasks) { if (workers.find(name) != workers.end()) { std::cout << "Thread with this name already exists\n"; return; } auto worker = std::make_unique<Worker>(name, maxTasks); worker->start(); workers[name] = std::move(worker); }
bool runTask(const Task& task) { const std::string& threadName = task.getMetadata().threadName; auto it = workers.find(threadName); if (it != workers.end()) { return it->second->runTask(task); } else { for (auto& [_, worker] : workers) { if (worker->runTask(task)) { return true; } } return false; } }
private: std::unordered_map<std::string, std::unique_ptr<Worker>> workers; };
int main() { ThreadPool pool;
pool.allocateThread("Thread1", 5); pool.allocateThread("Thread2", 3); pool.allocateThread("Thread3", 4);
pool.runTask(Task(TaskInfo("Thread2", 2, "TypeB"), []() { std::cout << "Task executed on thread 2 (priority 2)\n"; })); pool.runTask(Task(TaskInfo("Thread3", 3, "TypeC"), []() { std::cout << "Task executed on thread 3 (priority 3)\n"; })); pool.runTask(Task(TaskInfo("Thread1", 1, "TypeA"), []() { std::cout << "Task executed on thread 1 (priority 1)\n"; }));
for (int i = 10; i > 5; --i) { pool.runTask(Task(TaskInfo("Thread2", i, "TypeB"), [i]() { std::cout << "Task executed on Thread 2 (priority " << i << ")\n"; })); }
std::this_thread::sleep_for(std::chrono::seconds(2));
return 0; }
|